심층 강화학습(DRL) 고성능 전력효율 처리
전력효율 2.4배 높은 ‘OmniDRL’ 개발
"인공지능 반도체 분야 투자 지속 확대"

한국과학기술원(KAIST) 유회준 교수 연구팀(제1저자 : 이주형 박사과정)이 구글 딥마인드에서 개발한 바둑 인공지능 프로그램인 ‘알파고’에서 활용되었던 심층 강화학습(DRL: Deep Reinforcement Learning)을 높은 성능과 전력효율로 처리할 수 있는 첨단 인공지능 반도체 기술을 개발했다고 과학기술정보통신부 관계자는 밝혔다.
심층 강화학습 알고리즘은 정답이 주어지지 않은 상황에서 최적의 답을 빠르게 찾기 위해 여러 개의 신경망을 동시에 사용하는 특징이 있다. 하지만 신경망이 복잡하게 얽혀있고 대규모 데이터를 처리해야 하기 때문에 기존에는 대용량 메모리를 가진 다수의 고성능 컴퓨터를 병렬 활용해야만 구현 가능했으며, 연산 능력이 제한적이고 사용되는 메모리가 적은 노트북, 스마트폰 등에서는 구현이 불가능했다.
이에 카이스트 연구팀은 모바일 기기 등에서도 심층 강화학습이 가능하도록 기존 대비 성능이 우수하고 특히, 전력효율이 2.4배 높은 인공지능 반도체 기술인 ‘OmniDRL’을 개발했다.
개발된 ‘OmniDRL’은 구체적으로 △심층 신경망 데이터(가중치)에 대한 압축률 증가(연산에 불필요하거나 중복된 데이터 개수 감소), △데이터 압축 상태로 연산(기존 반도체는 압축 해제 필요), △연산(프로세서)·저장(메모리) 기능이 통합된 SRAM(Static RAM) 기반의 PIM(Processing-In-Memory) 반도체 기술을 사용했다.
카이스트 유회준 교수는 “이번 연구는 한 개의 반도체에서 심층 신경망을 높은 압축을 유지한 상태로 추론 및 학습을 가능하게 하였으며, 특히 불가능이라 여겨졌던 소수점 연산이 가능한 인공지능 반도체 기술을 개발했다는 점에서 의미가 크다”고 말했으며, 과기정통부 인공지능기반정책관은 “이번 연구는 반도체 분야의 새로운 패러다임인 인공지능 반도체 분야에서 국내의 연구결과를 국제적으로 인정받았다는 점에서 의미가 크다. 과기정통부는 앞으로 지난해 착수한 1조 원 규모의 인공지능 반도체 연구개발을 지속 지원하는 한편, 내년부터 4,000억 원 규모의 PIM 반도체 기술 개발 사업을 본격 추진하는 등 인공지능 반도체 분야에 대한 투자를 지속 확대해 나갈 것”이라고 밝혔다.


