즐겨찾기 등록 RSS 2.0
장바구니 주문내역 로그인 회원가입 아이디/비밀번호 찾기
기사 분류 > 기획
T a g    C l o u d
MOSES울트라손 트리뷰트 7Copland디지털 오디오케인오디오 액세서리스위스매지코컨투어 20RCA Cable블루투스오데온NaimEntreq에피콘TenorDynaudioSeaWave Acoustics헤드폰 앰프Spectral혼 스피커BBC 모니터 스피커BDP-105미니 컴포넌트A-S3000신세시스턴테이블 카트리지오포MPD-3CA-X30TDLOppo Sonica DAC북셀프 스피커케프교향곡일본Oppo UDP-203Triode진공관headphoneAtillaPenaudio마르텐Avantgarde AcousticFurutech라이프스타일 오디오Pauli Model톨보이Tannoy하이엔드 케이블파워앰프Emme Speakers카스타Magico플로워 스탠딩 스피커NAD모니터 스피커mblDynaudio Contour 20미니 하이파이크릭CD5si소프트 돔 미드레인지Norma Audio Revo IPA-140Legacy Audio에소테릭달리올닉바쿤Allnic AudioPentone 7Casta AcousticsRoma 510AC알레테이아시청회HifimanAudio Physic다이아몬드Resonessence Labs울트라손스피커Zett Audio MC368-BSEGato AudioCayin A-50TP 6L6Fusion 21Mauri코플랜드오토폰KossMcintoshNote V2Crystal Cable북셀프형 스피커와이어월드다이나믹 모션뮤지컬 피델리티이탈리아 오디오헤드폰TRV-845SEBeyerdynamic카트리지Luxman이글스톤웍스OrpheusInkel마란츠power amplifierCalyx와피데일블루투스 이어폰Emm LabsMatching하이파이 오디오베를리오즈LSOPrimare그라도파이널 오디오 디자인oBravo AudioDaliHautongaCD·SACD 플레이어AyonFloor Standing speaker네임Unison Research제트오디오소니Marshall피에가DC10 AudioATC SCM100 PSLT New부메스터DDA-100Soliton오디오쇼I22OppoNuForceP10북셀프SCM11Triangle Elara LN01EuroArtsDartzeel베토벤Atoll엘락뉴질랜드SCA-7511 MK3TeacAletheia실바톤 어쿠스틱스듀에벨Advance Acoustic진공관앰프LPPower Cable오디오숍이클립스바쿤 프로덕츠ArcamDMA-360 S2SynthesisHemingway프랑스소울SpendorPlayback Designs액티브 스피커JBLQuadYamaha캐나다블루투스 스피커홈시어터멀티탭서그덴누포스CD Player노도스트다질라인 마그네틱포노 앰프오디오랩멜로디I32라흐마니노프하이엔드 오디오다이얼로그코스DSD하베스퍼포먼스Cayin아날로그 오디오에어 타이트Marten콘서트덴마크Piega나노텍 시스템즈mbl 노블 라인프로악Cocktail AudioBookshelf SpeakerPerfect Sound스펜더XLR Cable올인원레퍼런스하이파이 스피커SpeakerOrtofonAir Tight프라이메어ATCTDL Acoustics TDL-18CD골든 스트라다PRE32Audio-TechnicaBrikA-88T MK2메를로Dialog나드Epicon 6하이파이오디오Compact 7ES-3Emm 랩스TDL 어쿠스틱스WharfedaleNaxos하이엔드 헤드폰피아노베스트셀러하이파이맨Martin Logan보스HarbethDavis AcousticsSCM19차리오Kaitaki버메스터오디오 테크니카데논바흐Mark LevinsonA-55TP그란디오소진공관 845Line Magnetic Audio피아노 협주곡말러패스컴포넌트매킨토시H88A SignaturePMC오디오 케이블Powertek모니터 오디오인디아나 라인mbl Noble Line N51YBA올인원 오디오영국300BAudio ResearchIn-AkustikMA-2인터 케이블트라이앵글EclipseCreekAV 리시버Mundorf그래험Pro-Ject Audio Systems오디오 아날로그Grado하이파이ElacColorflyDenon앰프Audel노르마JamoDuevelTDL-18CDRotel차이코프스키Final Audio Design아폴론USB Cable파워 케이블Lehmann Audio파이오니아Magno야마하M1네트워크 오디오스마트폰사운드바베럼 어쿠스틱무선 액티브 스피커Wireworld바이올린마니아 탐방플래그십Cable이어폰블루투스 헤드폰Vienna AcousticsS5BakoonEsoteric블루레이 플레이어야모진공관 인티앰프Master Sound네트워크 플레이어SonySpeaker Cable브람스어반이어스TDL AcousticsAudiolabEpicon 2ScandynaCambridge Audio헤코플래그십 플레이어Altec아날로그정전형 스피커하이엔드 앰프CDT-15ACDT-15A Limited Edition톨보이 스피커UltrasoneAyre인티앰프펜오디오S1D/A 컨버터Melody데이비스 어쿠스틱스bookshelf그리폰L-507uX진공관 앰프프로젝트 오디오 시스템즈턴테이블소나타시라Musical FidelityCD22모노블록 파워 앰프ZenSati라디오TrigonM6 500iSoul오디오빈티지 오디오Proac시스템 오디오럭스만엥트레크Golden Strada소형 스피커캠브리지 오디오클래식SimaudioFS407ParadigmBakoon Products클립쉬AMP-5521 MonoMerlot라이프스타일Klipsch케이블다인오디오마그낫매칭Dynamic Motion첼로Verum Acoustics트라이오드마그노후루텍M3iATM-300Integrated Amplifier히사이시 조야마하 오디오JadisEgglestonWorks플리니우스Indiana Line플로어스탠딩 스피커Valhalla 2파워 앰프Silbatone Acoustics패러다임EposLS50에메영국 스피커Waterfall Audio재즈슈퍼 HL5 플러스 스피커다레드 오디오Aura브로드만뮤직캐스트아톨MarantzA21aL Series 2문도르프유니슨 리서치Analog VoiceMonitor 30.1Sonus FaberDACMUSE ONTakstarPass플레이백 디자인스AccuveMC Anna퍼펙트 사운드USB 케이블마스터 사운드이탈리아온쿄반도체 오디오프로코피예프CD-S3000StelloPSBSACD 플레이어자디스아큐브Monitor AudioRoksan파워텍12AX7Sony Music EntertainmentElectrocompaniet8200PCD 플레이어Urbanears스트리밍 플레이어Ultimate MK3TriangleSwans하이엔드KT88에포스AlessandroKEF탄노이이매진Audio Analogue독일 오디오OnkyoGryphonR700쿼드Good InternationalUltrasone Tribute 7Allnic스완NordostVan Den Hulamplifier슈베르트CH Precision네트워크 리시버Sota비엔나 어쿠스틱스멘델스존Cayin MA-80 Multi Tesla BlueSugdenB&W드보르작런던 심포니 오케스트라A-300P MK2오케스트라BoseAudioGuy비엔나 어쿠스틱스의 리스트정승우AudioQuestVienna Acoustics Haydn Grand Symphony Edition로텔프리앰프국산소스기기칵테일 오디오A-50TP스칸디나솔리톤Plinius독일에코사운드트라이곤마샬NAD C356BEE DAC2스피커 케이블Turntable라인 마그네틱 오디오Burmester아방가르드돌비 애트모스Odeon
반도체 오디오 앰프의 이해와 설계 제작
글 이재홍 2015-05-01 |   지면 발행 ( 2015년 5월호 - 전체 보기 )




현재의 오디오 상황은 하이엔드와 PC-FI가 공존하는 듯하다. 오디오 소스기기로는 DSD와 24비트/192kHz 음악 파일을 재생할 수 있는 파일 플레이어가 주력 기기로 대두되고 있다. 하지만 오디오 앰프 부분은 아직도 또 먼 미래에 있어서도 반도체 및 진공관을 사용한 형태가 그대로 유지·발전될 전망이다. 이번 연재를 통해 오디오 기기의 근간이 되는 트랜지스터, FET 및 OP AMP를 사용한 반도체 오디오 앰프에 대한 이해와 이를 사용해 앰프 및 소스기기를 설계·제작하고자 하는 분을 위한 기술적 토대를 제공코자 한다. 가급적 수식은 자제하고, 평이하게 기술해 누구라도 쉽게 이해할 수 있도록 했다.


제1편 오디오용 OP AMP
OP AMP는 Operational Amplifier의 준말로, 번역하면 연산 증폭기라 할 수 있다. 앰프라는 이름 때문에 좀 혼동을 일으킬 수도 있는데, 이는 하나의 부품 소자로 보통 IC와 같은 모습을 하고 있다. OP AMP의 원형은 알란 블룸레인(Alan Blumlein)이 1936년에 진공관을 사용해 만들었다. 두 개 진공관의 캐소드를 공통 저항을 통해 접지한 형태의 것이었다. 본격적인 OP AMP는 1965년에 페어차일드에서 나온 uA709란 반도체를 사용한 OP AMP가 나오고 나서부터이다. 지금도 범용적으로 가장 많이 사용하는 LM741이 IC 형태로 나오고 나서 본격적인 OP AMP의 확산이 시작되었다. 하지만 LM741은 슬루 레이트(Slew Rate)가 0.5V/㎲ 밖에 되지 않아 20kHz의 오디오 대역을 충족하지 못해 오디오용으로 사용은 되지 않았다.
OP AMP가 오디오용으로 사용되기 시작한 것은 1970년대 후반에 J-FET 소자를 사용한 TL072와 지금도 많이 사용하는 NE5532가 나오고 나서부터이다. 이후 오디오용으로 사용할 수 있는 OP AMP가 속속 등장했는데, 현재는 CD, DVD, 블루레이 플레이어와 파일 및 네트워크 플레이어, 그리고 D/A 컨버터의 D/A 변환 이후 I/V 변환 및 전압 증폭, 임피던스 매칭용으로는 거의 대부분 OP AMP를 사용하고 있다. 또한 PC-FI 기기, 특히 헤드폰 앰프의 전압 증폭 용도로 사용되고 있으며, 이외에도 라인 앰프 및 멀티 앰프 구동을 위한 채널 디바이더 등에도 폭 넓게 사용되고 있다. 프로용으로는 오디오 믹서 등에도 많은 OP AMP가 사용된다.

▲ 오포 블루레이 플레이어의 DAC

1. OP AMP의 특성

OP AMP는 한 개의 차동 입력과 대개 한 개의 단일 출력을 가지는 직류 연결형(DC-Coupled) 고 이득 전압 증폭기이다. 하나의 OP AMP는 그 입력 단자 간의 전압 차이보다 대개 백 배에서 수 천 배 큰 출력 전압을 생성한다. 즉, 이득이 매우 높다. 또한 이득과 같은 최종 요소의 특성이, 온도 변화와 OP AMP 자체의 불균일한 제조 상태에 거의 의존하지 않고, 외부 부품(Component)에 의해서 설정되기 때문에 회로 설계에서 자유도가 높다.
OP AMP의 회로적 표현은 <그림 1>과 같고, 각 기호의 의미는 <그림 1>의 설명과 같다. 회로의 해석 과정에 중요한 영향을 미치지 않을 경우 공급 전압 기호는 생략되는 경우가 있다.


▲ 그림 1. OP AMP의 회로적 표현

이상적 OP AMP는 다음 특성을 갖는다. 즉, 이득은 무한대. 대역폭도 무한대. 위상차는 없으며, 슬루 레이트는 무한대로 커서 고주파 특성도 우수하고, 입력 임피던스도 무한대로 커서 어떤 입력이든 받을 수 있다. 한편 출력 임피던스는 0이어서 어떤 부하이든지 구동하기 쉽다. 입력 전류는 0. 오프셋 전압도 필요 없으며, 잡음도 0. 또한 공통 모드 제거비(CMRR)와 전원 전압 제거비(PSRR)도 무한대여서 공급 전압의 리플이나 잡음의 영향을 받지 않는다. 이를 표로 정리하면 <표 1>과 같다.


▲ 표1. 이상적인 OP AMP 의 특성

OP AMP는 내부 사용 반도체에 따라 바이폴라 트랜지스터형과 FET형으로 나누어진다. 바이폴라형의 것으로 오디오용으로 많이 사용되는 것은 NE5532이며 FET형은 TL074이다.
OP AMP의 2개의 입력은 차동 입력으로, 바이폴라형은 베이스(Base), FET형은 게이트(Gate)로 구성된다. OP AMP가 동작하기 위해서는 이 입력 단자에 바이어스(Bias) 전류가 흘러야 하는데, 바이폴라형은 보통 수 ㎁(Nano Ampere)에서 수십 ㎁, FET형은 이보다 1/1000 정도 적어, 수 ㎀(Pico Ampere)에서 수 십 ㎀의 전류가 필요하다.
또한 IC 패키지 하나에 몇 개의 소자가 들어가 있는 가에 따라 싱글, 듀얼 및 쿼드 형으로 나누어진다. 오디오용으로는 스테레오 2채널에 사용하는 경우가 많으므로 듀얼형이 가장 많이 사용된다. <그림 2>는 싱글, 듀얼 및 쿼드형의 모습과 핀 배치를 나타내었다.


▲ 그림 2. OP AMP의 외형도 및 핀 배치

외형적으로는 보면, 일반적인 것은 플라스틱 몰드에 들어간 것이지만, 고급 오디오용 등으로 금속 캔형도 있다. 현재는 리드 홀 타입보다는 표면 실장형(SMD)의 패키지가 더 일반적이다.


▲ 일반적인 플라스틱 몰드 표면 실장형 OP AMP

가. 입력 오프세트(Offset) 전류
OP AMP는 차동 입력으로 되어 있기 때문에 이론적이라면 비반전 및 반전의 두 개의 입력이 접지되어 있는 것 등과 같이 전압 차이가 없다면 출력도 0으로 되어야 하지만, 실은 그렇지 않고 +이든 -이든 어느 하나로 치우친 전압 값이 나오게 된다. 이런 현상을 오프세트라고 하는데, 이는 입력 전류에 기인하는 경우와 입력 전압에 기인하는 경우가 있다.
우선 입력 전류에 따른 오프세트를 설명하기 위해 <그림 3>과 같이 저항을 통해 두 개의 입력이 접지되어 있는 경우를 보자. 이 두 개의 입력에 연결된 저항치가 완전히 같은 값을 가지고 있다고 해도 OP AMP의 내부의 소자의 미세한 차이에 의해 두 입력 단자에 흐르는 전류도 차이가 발생한다. 이 두 개의 입력 단자에 흐르는 바이어스 전류의 차이를 입력 오프세트 전류 IIO라고 하며, IIO = IB1 - IB2 로 계산된다. 여기서 IB1은 반전 입력 바이어스 전류이고, IB2는 비 반전 입력 바이어스 전류이다.


▲ 그림 3. 입력 오프세트 전류

이 입력 오프세트 전류는 일반적으로 입력 바이어스 전류의 1/10 정도이다. 이 입력 오프세트 전류에 의해서 출력단에 전압 △V0가 발생하게 되는데, 이를 오프세트 전압이라고 하며, 이 오프세트 전압이 생기지 않도록 해야 한다. 가장 대표적인 OP AMP인 741의 경우를 예로 들어 <그림 4>를 통해 오프세트 전압이 생기는 현상을 알아보자. 여기서 오프세트 전류는 20㎁라고 하고, 귀환 저항 R2를 500KΩ이라고 할 때 △V0 = 20×10-9×500×103 = 0.01V, 즉 출력단에는 10㎷의 오프세트 전압이 나타난다. 이 정도의 오프세트 전압은 후술하는 오프세트 전압 조정을 한다면 문제없이 사용할 수 있다.


▲ 그림 4. 입력 오프세트 전류에 의한 출력단의 오프세트 전압

이 오프세트 전압을 줄이기 위해서는 귀환 저항의 값을 M(메가) 단위로 크게 하는 것을 피해야 하며, 양 입력의 저항을 정밀급 저항으로 사용해야 한다. 출력단에 직류 전류가 흐르는 것을 방지하기 위한 커플링 콘덴서를 넣는 경우에는 어느 정도의 오프세트 전압이 나와도 큰 문제가 되지 않는다.

나. 입력 오프세트 전압
OP AMP에는 입력 오프세트 전류 이외에도 내부 소자의 불균형 때문에 출력 오프세트 전압 △V0가 생긴다.

다음 식으로 계산되며, 여기서 R1은 입력 저항, R2는 귀환 저항이다.
예를 들어 <그림 5>와 같이 741의 입력 오프세트 전압이 2㎷이고, R1은 50KΩ, R2는 500KΩ이라고 할 때 출력 오프세트 전압 △V0는 22㎷가 생긴다. 이는 다음 식으로 계산할 수 있다.



▲ 그림 5. 입력 오프세트 전압의 영향

이 출력 오프세트 전압은 이득이 클수록 더 많이 나타나게 된다. 이를 없애기 위해서는 <그림 6>에서 보는 바와 같이 외부에 반고정 저항을 오프세트 조정 핀에 붙여 출력 오프세트 전압을 0으로 만든다. 현재는 오프세트 조정 핀이 없는 OP AMP가 많으며, 특히 듀얼 이상의 것은 오프세트 조정 핀이 없는 것이 일반적이다. 따라서 출력 오프세트 전압을 되도록 줄이기 위해서는 최신의 OP AMP를 사용하는 것이 좋다. 입력 오프세트 전류에 의한 △V0와 입력 오프세트 전압에 의한 △V0는 출력단에서 중첩해서 나타나게 되는데, 입력 오프세트 전류에 의한 영향이 좀더 크므로 이 부분에 좀더 주의를 기울여야 한다. 오프세트 조정을 할 수 있는 OP AMP는 종류에 따라 +전압을 가해 주는 것과 -전압을 가해 주는 것이 있으므로 데이터 시트를 참조해서 설계해야 한다.


▲ 그림 6. 오프세트의 조정

다. 이득의 설정
OP AMP의 오픈 루프 이득은 90-100dB 정도로 아주 높지만, 실제로 사용하는 이득의 값은 이보다 훨씬 낮으므로 원하는 이득은 다음 식에 따라 설정해서 사용한다. 실 사용 시 이득은 입력 저항 R1과 귀환 저항 R2의 비율로서 결정된다.


설계에 앞서 먼저 어느 정도의 이득이 필요한지를 결정한다. 예를 들어 10배의 이득이 필요하다면 R1 : R2 = 1 : 9가 되면 이득은 10배를 얻을 수 있다. 이때 R1R2를 100Ω과 900Ω으로 할 것인지 10KΩ과 90KΩ으로 할 것인지는 입·출력 임피던스, 입력 오프세트 전류 등의 영향을 고려해서 결정한다. 일반적으로 R1은 1-50KΩ, R2는 10-500KΩ에서 정한다.


▲ 그림 7. 이득의 설정

이득 설정에 있어 수십 배의 이득 설정은 위의 식을 사용하면 되지만 이득을 100배 정도로 크게 하려면 주파수 특성에 주의해야 한다. 이득이 크게 될수록 사용할 수 있는 주파수 대역은 좁아지는데, 이는 <그림 8>과 같이 이득 및 주파수 특성과 슬루 레이트가 연관 관계가 있기 때문이다. 비교적 낮은 주파수부터 6dB/oct 정도의 슬로프로 얻을 수 있는 이득이 내려간다. 자세한 것은 뒤의 슬루 레이트 편에서 설명한다.


▲ 그림 8 주파수에 따른 오픈 루프 이득 특성

라. 슬루 레이트
OP AMP의 주파수 특성을 표시하는 것으로 FT가 있다. OP AMP의 오픈 루프 이득은 매우 크지만, 이는 주파수가 낮을 때의 경우이고, 주파수가 높아짐에 따라 점차 오픈 루프 이득은 점차 작아지게 되는데, 어느 한계에 이르러서는 전혀 증폭을 할 수 없게 된다. 이렇게 증폭을 할 수 없는, 즉 이득이 1에 이르는 주파수를 트랜지션(Transition) 주파수 FT라고 하며, OP AMP의 성능을 나타내는 주요한 요소이다. 최근에는 Unity Gain Bandwidth라는 표현을 더 잘 사용한다. 즉, 이득이 1인 곳까지의 주파수 대역폭을 의미한다.
NE5532의 경우 FT는 10MHz이다. 따라서 오디오 가청 주파수인 20kHz를 크게 넘기 때문에 오디오용으로 훌륭하게 사용될 수 있음을 의미한다. 넓은 주파수 대역에서 평탄한 이득을 얻기 위해서는 FT가 큰 수치의 것을 사용해야 한다.
그러나 또 하나의 제약 조건이 있다. 입력되는 신호의 세기가 작을 때는 주파수 특성이 좋지만, 어느 이상 입력 신호의 크기가 커지고 따라서 출력되는 신호의 크기가 커지면 주파수 특성이 나빠지게 된다. 이런 관계를 나타내는 것이 슬루 레이트로, 전압의 변화를 시간의 비율로 나타낸 것으로, 단위는 V/㎲로 표시한다.
NE5532의 경우 9V/㎲인데, 이는 1/1000000초 당 9V가 변화될 수 있음을 나타낸다. 이 슬루 레이트가 작으면 신호의 변화가 작을 때는 잘 증폭이 되지만, 어느 한계를 벗어나면 왜율(Distortion)이 발생하게 된다. 따라서 다이내믹 레인지가 큰 오디오 회로에서 사용하는 경우는 어느 정도의 슬루 레이트율을 가진 OP AMP를 선택해야 한다.
그러나 슬루 레이트율이 크고 FT가 큰 OP AMP를 무작정 선택하는 것은 좋지 않다. 왜냐하면 이런 OP AMP들은 발진하기 쉽기 때문이다 그래서 목적하는 주파수와 슬루 레이트를 만족하는 것 중에서 적절한 것을 골라 사용하는 것이 바람직하다. 슬루 레이트율이 높은 OP AMP를 사용하는 경우에는 발진을 일으키지 않도록 회로 패턴을 잘 설계하고, 전원 임피던스를 최대한 낮추어야 한다. 전원 임피던스를 낮추는 방법으로는 전원선을 짧게 하고, 필름 콘덴서를 출력단에 사용하는 방법 등이 있다.

마. 입·출력 임피던스
OP AMP의 입력 임피던스는 매우 높아서 사용하기 쉽다. 일반적으로 증폭 소자는 입력 임피던스는 높을수록, 출력 임피던스는 낮을수록 회로 설계하기가 쉬운데, OP AMP의 경우 바이폴라의 형식의 것은 수 MΩ이상이고, FET의 형식의 것은 1012Ω 정도로 높다. 그렇기 때문에 OP AMP에 붙이는 입력 저항이 실질적인 입력 임피던스가 된다. 여기서 입력 용량의 값은 아주 작기 때문에 고려하지 않아도 된다. 특히 FET 입력의 OP AMP는 입력 저항의 값을 크게 해도 되지만 열탄산 잡음이 발생하기 쉽고, 오프세트 전압에 미치는 영향도 커지기 때문에 대략 100KΩ 이하에서 사용하는 것이 안전하다.
출력 임피던스는 대략 수 Ω에서 수백 Ω 정도이지만, 이는 오픈 루프 때의 경우이고, 실제 사용하는 경우는 다음의 식과 같이 얻어진다. 여기서 R1은 입력 저항, R2는 귀환 저항, Av는 오픈 루프 게인, Z는 오픈 루프 출력 임피던스이다.


여기서 ( R1+R2)/R1는 클로즈드 루프 이득인데, 이 값이 낮아질수록 실제의 출력 임피던스는 낮아진다. 예를 들어 R1은 5KΩ, R2는 500KΩ이라고 하면 클로즈드 루프 이득은 100이 된다. 오픈 루프 이득이 50000이고, 오픈 루프 출력 임피던스가 100Ω이라고 하면 실제의 출력 임피던스는


이라는 극히 낮은 값을 얻게 된다. 이 가정은 오픈 루프 입력 임피던스가 무한대라는 가정에서 나온 것이지만, 실제 OP AMP의 오픈 루프 임피던스 값은 충분히 높기 때문에 큰 문제가 없다. 이 식의 적용은 비 반전 입력의 경우나 반전 입력 경우나 마찬가지로 적용된다.

바. 공통 모드 제거비(CMRR)와 전원 전압 제거비(PSRR)
공통 모드 제거비(CMRR : Common-Mode Rejection Ratio)는 OP AMP가 두 입력(+ 및 -)에 공통되는 신호가 들어오는 경우 이를 통과시키지 않고 거부하는 정도를 나타낸다. 높은 값의 CMRR은 오디오로서의 응용에 있어서 중요한데, 특히 밸런스 전송을 하는 경우에 더욱 그러하다. V+와 V-의 입력을 가지는 OP AMP의 출력은 V0 = Ad(V+ - V-)이다. 여기서 Ad는 OP AMP의 이득이다. 그러나 실제 출력은 다음과 같다.


여기서 AS는 공통 모드 이득인데, 보통 차등 이득보다 훨씬 작다. CMRR의 단위는 데시벨(dB)이고, 다음과 같이 정의한다.


CMRR은 공통 모드 신호가 출력단에 얼마만큼 나타나는지 보여주는 척도이기 때문에 매우 중요한 특성이다. CMRR의 크기는 신호의 주파수와 함수와 관련이 있다.
한편 전원 전압 제거비(PSRR : Power Supply Rejection Ratio)는 OP AMP의 전원 공급 핀에 들어가는 전압의 변화가 출력단에 나타나는 비율로 정의하는데, 단위는 데시벨(dB)를 사용하고, 다음과 같이 정의한다.


이를 측정할 때는 기준 전압에 교류 전압인 60Hz와 이의 2배수인 120Hz의 주파수 성분을 넣어 출력 측에서 얼마나 이 상용 교류 전압 성분이 나타나는지를 알아본다.
OP AMP를 사용할 때 가정에 공급되는 60Hz의 교류 전압을 정류해서 사용하는 경우가 많으므로 이 값이 높을수록 공급되는 전원에 포함되는 리플 노이즈에 의한 영향을 적게 받으므로 오디오적으로 더 좋은 성능을 내준다고 할 수 있다. 

<Monthly Audio>


해당 기사에 포함된 텍스트와 사진에 대한 저작권은 모두 월간오디오에 있습니다.
본지의 동의 없이 사용 및 변형했을 시 법에 의해 처벌받을 수 있습니다.

인쇄하기   트윗터 페이스북 미투데이 요즘 네이버 구글
관련 태그 : 반도체 오디오 앰프 OP AMP
이전 페이지 분류: 기획 2015년 5월호
[ 기획 ]   Perfect Guide for Semiconductor Amplifier
 
07-2 반도체 오디오 앰프의 이해와 설계 제작
  2015-12-01
 현재의 오디오 상황은 하이엔드와 PC-FI가 공존하는 듯하다. 오디오 소스기기로는 DSD와 24비트/192kHz 음악...
 
06 반도체 오디오 앰프의 이해와 설계 제작
  2015-10-01
 현재의 오디오 상황은 하이엔드와 PC-FI가 공존하는 듯하다. 오디오 소스기기로는 DSD와 24비트/192kHz 음악...
 
04 반도체 오디오 앰프의 이해와 설계 제작
  2015-08-01
 현재의 오디오 상황은 하이엔드와 PC-FI가 공존하는 듯하다. 오디오 소스기기로는 DSD와 24비트/192kHz 음악...
반도체 오디오 앰프의 이해와 설계 제작
  2015-05-01
 현재의 오디오 상황은 하이엔드와 PC-FI가 공존하는 듯하다. 오디오 소스기기로는 DSD와 24비트/192kHz 음악...
[ 기획 분류 내의 이전기사 ]
(2015-04-01)  Oppo HA-2·PM-3
(2015-04-01)  Audio Show
(2015-03-02)  PISnet HighEnd
(2015-02-01)  Bakoon Products AMP-5521 Mono
(2015-02-01)  Dynaudio Xeo 6
[ 관련기사 ]
반도체 오디오 앰프의 이해와 설계 제작 (2015-06-01)
리뷰 (935)
특집 (682)
포커스 (533)
뉴프로덕트 (381)
음반 소개 (339)
매칭 (146)
기획 (108)
에세이 (102)
뉴스 (90)
인터뷰 (74)
핫아이템 (64)
오디오 매니아 (61)
커버 스토리 (59)
브랜드 스토리 (33)
오디오 숍 (28)
컬럼 (11)
연재 기사
최근 많이 본 기사
AKG N60NC Wireless
Davis Acoustics Eva
Klipsch The Three
토렌스 320 턴테이블
나는 국산이다 스피커(Spe...
ATC SCM19 Luxman L-507uX...
TDL Acoustics M88
Onkyo A-9150
Sony WI-1000X
Onkyo TX-8220·TX-8250
과월호 보기: